Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
Q is empty.
Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
2ND1(cons2(X, XS)) -> HEAD1(activate1(XS))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
2ND1(cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__from1(X)) -> FROM1(activate1(X))
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__s1(X)) -> S1(activate1(X))
SEL2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
2ND1(cons2(X, XS)) -> HEAD1(activate1(XS))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
2ND1(cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 5 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
TAKE2(s1(N), cons2(X, XS)) -> ACTIVATE1(XS)
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X2)
ACTIVATE1(n__from1(X)) -> ACTIVATE1(X)
ACTIVATE1(n__take2(X1, X2)) -> TAKE2(activate1(X1), activate1(X2))
ACTIVATE1(n__take2(X1, X2)) -> ACTIVATE1(X1)
ACTIVATE1(n__s1(X)) -> ACTIVATE1(X)
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
SEL2(s1(N), cons2(X, XS)) -> SEL2(N, activate1(XS))
The TRS R consists of the following rules:
from1(X) -> cons2(X, n__from1(n__s1(X)))
head1(cons2(X, XS)) -> X
2nd1(cons2(X, XS)) -> head1(activate1(XS))
take2(0, XS) -> nil
take2(s1(N), cons2(X, XS)) -> cons2(X, n__take2(N, activate1(XS)))
sel2(0, cons2(X, XS)) -> X
sel2(s1(N), cons2(X, XS)) -> sel2(N, activate1(XS))
from1(X) -> n__from1(X)
s1(X) -> n__s1(X)
take2(X1, X2) -> n__take2(X1, X2)
activate1(n__from1(X)) -> from1(activate1(X))
activate1(n__s1(X)) -> s1(activate1(X))
activate1(n__take2(X1, X2)) -> take2(activate1(X1), activate1(X2))
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.